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Introduction
The respiratory health effects of bisphenol 
A (BPA) have been of recent interest (Kwak 
et al. 2009; Midoro-Horiuti et al. 2010; 
Nakajima et al. 2012; Roy et al. 2012). BPA 
is an organic chemical used in the production 
of polycarbonate plastics and epoxy resins. 
These plastics are found in food and drink 
packaging and are used as lacquers in food 
cans and bottle tops. BPA can migrate into 
food from these containers (Carwile et al. 
2009; Rudel et al. 2011) and is also found in 
indoor air and dust (Inoue et al. 2006; Wilson 
et al. 2007). Over 90% of U.S. urine samples 
tested in the National Health and Nutrition 
Examination Survey (NHANES) have mea-
surable levels of BPA (Calafat et al. 2008), 
indicating widespread and continual exposure. 
Exposure levels for adult humans are in the 
0.3–22.3 ng/mL range for unconjugated BPA 
in serum (Padmanabhan et al. 2008; vom Saal 
et al. 2007), although a recent study found 
that consumption of canned soup resulted 
in short term 1,000-fold increases (Ohshima 
et al. 2007). Plasma BPA levels in pregnant 
women and in fetuses have a similar range 
(Schönfelder et al. 2002). In adult humans, 
BPA pharmacokinetics have been found to 
be simi lar to pharmacokinetics in mice and 
monkeys, with linear kinetics (Taylor et al. 

2011) and fairly complete clearance; there-
fore, high serum levels in adult humans reflect 
continual exposures.

There is concern that current levels of 
exposure to BPA may adversely affect human 
development. In a companion study to our 
current research, BPA accelerated pre natal 
development of the rhesus monkey mammary 
gland, including increased mammary bud den-
sity and overall gland maturation, similar to 
what has been seen in rodent studies (Tharp 
et al. 2012; Vandenberg et al. 2007). In a 
mouse ovalbumin sensitization model, mater-
nal exposure to BPA increased asthma hall-
marks such as eosinophils in broncho alveolar 
lavage fluid and airways hyper responsiveness 
(AHR) in offspring (Midoro-Horiuti et al. 
2010) although histology of the lung was not 
characterized. BPA is related to allergic sen-
sitization in animal models and in humans 
(Chu et al. 2006; Midoro-Horiuti et al. 2010; 
Ohshima et al. 2007); however, lung effects 
have been little studied.

Many human lung diseases are charac-
terized by abnormal epithelial cell secretions, 
particularly of mucus. Within the conducting 
airways, both mucins and Clara cell secretory 
protein (CCSP) have roles in airway disease 
(Ramsay et al. 2001; Voynow 2002), mature 
during pre- and post natal development, and are 

among the most abundant secretory proteins 
in lung tissue. MUC5AC and MUC5B are 
the predominant secreted gel-forming mucins 
(Evans et al. 2009) with MUC5AC at as much 
as 300-fold lower levels than MUC5B during 
fetal lung development. CCSP is thought to 
have a protective role in the airways, regulat-
ing immune responses and attenuating oxidant 
stress (Plopper et al. 2005; Snyder et al. 2010). 
In general, mucin expression is more abundant 
in proximal airways and CCSP expression is 
more abundant in distal airways, corresponding 
to the differential abundance of mucous cells 
and Clara cells, respectively, in these airway 
regions. We selected CCSP and MUC5AC/B 
to study because these secretory proteins 
mature during the periods spanned by this fetal 
BPA exposure. Further, the rhesus monkey 
lung is an excellent model for human fetal lung 
development in that it recapitulates the cellu-
lar and anatomic composition, as well as the 
timing (Table 1), of human lung development 
(Plopper and Hyde 2008). In contrast, rodent 
models have airway secretory cells that are rela-
tively immature at birth and do not contain 
mucous goblet cells throughout the tracheo-
bronchial tree as the primary secretory cell type.

Lung epithelial development occurs in a 
series of highly choreographed sequences of 
events that span the pre- and post natal period 
(Plopper and Fannuchi 2004). Proximal con-
ducting airway epithelial cells mature earlier 
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Background: Bisphenol A (BPA) exposure early in life results in organizational changes in repro-
ductive organs, but the effect of BPA on conducting airway cellular maturation has not been studied. 
Late gestation is characterized by active differentiation of secretory cells in the lung epithelium.

oBjective: We evaluated the hypothesis that BPA exposure disrupts epithelial secretory cell 
develop ment in the fetal conducting airway of the rhesus macaque.

Methods: We exposed animals to BPA during either the second (early term) or the third (late 
term) trimester. There were four treatment groups: a) sham control early term, b) sham control late 
term, c) BPA early term (BPA-early), and d) BPA late term (BPA-late). Because cellular maturation 
occurs nonuniformly in the lung, we defined mRNA and protein expression by airway level using 
microdissection.

results: BPA exposure of the dam during late term significantly accelerated secretory cell matura-
tion in the proximal airways of the fetus; both Clara cell secretory protein (CCSP) and MUC5AC/5B 
mRNA and protein expression increased.

conclusions: BPA exposure during late gestation accelerates secretory cell maturation in the 
proxi mal conducting airways. We identified a critical window of fetal susceptibility for BPA effects 
on lung epithelial cell maturation in the third trimester. This is of environmental health importance 
because increases in airway mucins are hallmarks of a number of childhood lung diseases that may 
be affected by BPA exposure.
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than those in distal airways. Because pre natal 
lung develop ment is site specific in the con-
ducting airways and the late fetal period is 
one of dynamic change, we have incorpo-
rated site-specific methods into our analysis 
of conducting airway gene and protein expres-
sion. Exposure to toxicants during the pre-
natal period that disturb the normal course 
of develop ment can result in disease later in 
life. The incidence of asthma is escala ting 
in children, and there is a hypothesis that 
environmental factors may be related to the 
increasing incidence. Interestingly, as pointed 
out by Midoro-Horiuti et al. (2010), this rise 
in asthma prevalence (Vollmer et al. 1998) 
began 20 years after the widespread use of 
plastics began in the 1950s.

The effect of BPA on lung maturation 
in an animal model with cellular structure 
and airway architecture similar to humans, 
such as the rhesus monkey, has not been 
studied. The goal of the present study was to 
address three key issues: a) to define the nor-
mal pattern of expression of airway secretory 
proteins (CCSP, mucins) in the fetal rhesus 
monkey lung, b) to determine whether pre-
natal exposure to an environmentally relevant 
level of BPA changes the abundance of these 
key secretory proteins, and c) to determine 
whether there is a window of susceptibility for 
BPA effects on pre natal lung development.

Methods
Animals. Adult female rhesus macaques 
(Macaca mulatta) were housed at the 
California National Primate Research Center 
as previously described (Hunt et al. 2012) [see 
Supplemental Material, p. 2 (http://dx.doi.
org/10.1289/ehp.1206064)]. Animal protocols 
were approved by the Animal Care and Use 
Committee of University of California, Davis; 
all studies were conducted in accordance with 
the Guide for the Care and Use of Laboratory 
Animals  (National Research Council 
Committee for the Update of the Guide for 
the Care and Use of Laboratory Animals 
2011). Animals were treated humanely and 
with regard for alleviation of suffering.

Only females (6–13 years of age) with 
a history of normal menstrual cycles were 
selected for this study. Animals were naturally 
mated. Pregnancy was detected by ultrasound 
examination and an estimated day of concep-
tion [gestation day (GD) 0] was assigned. At 
approximately GD40, the sex of all fetuses 
was determined and only those pregnancies 
with female fetuses continued in this study—
the originating project for these samples was 
designed to study BPA effects on oogenesis. 
This study is part of a series of studies whose 
primary goal is to assess the effects of BPA on 
organo genesis in nonhuman primates using a 
dose that results in serum levels of BPA simi-
lar to those found in humans. Because of the 

expense of these studies, several laboratories 
shared tissues derived from the parent study. 
Tissues were obtained at GD100 and GD150 
to study effects in the second and third tri-
mester, respectively (Figure 1A).

BPA dosing. Deuterated BPA (dBPA; 
CDN Isotopes, Quebec, Canada) was used in 
this study because it can be clearly distin guished 
by isotope dilution liquid chromatography– 
mass spectrometry, thus eliminating con-
cern about potential BPA contamination by 
materials used in the preparation, handling, 
or shipment of samples. dBPA in the dams 
was delivered in biocompatible silastic tubing 

implants placed subcutaneously via trocar in 
the scapular region so that the animals were 
continually exposed to BPA. Treatment days 
were at either mid-gestation (early dosing), 
GD50–GD100, or late gestation (late dos-
ing), GD100–GD150 (see Figure 1A). Term 
is approximately GD165. We removed and 
replaced the implants with freshly prepared 
implants after about 25 days of treatment 
(halfway through the dosing period) to assure 
that BPA levels remained near the maximum 
release rate. Silastic tubing implants for each 
animal were prepared as previously described 
(Hunt et al. 2012). The calculated release rate 

Table 1. Comparison of stages of fetal development in rhesus macaques and humans.a

Stage of pregnancy Stage of lung development

Trimester

GD

Lung stage

GD

Macaque Human Macaque Human
First ≤ 55 ≤ 90 Embryonic 21–55
Second 55–110 90–180 Pseudoglandular 56–80 42–112

Canalicular 80–130 112–168
Third 110–165 180–270 Saccular 131–165 168–270

GD, gestation day.
aBased on data from Burri (1997), Plopper and Fannuchi (2004), and Tarantal and Gargosky (1995).

Figure 1. Timeline of BPA exposure (A) and the sampling scheme for microdissected airways in the lung (B). 
This study assessed two periods of BPA exposure in the fetus: an early exposure that ended on GD100 (sec
ond trimester) and a late exposure that ended on GD150 (third trimester). Agematched shamtreated con
trol animals were included, allowing analysis of normal fetal development as well as BPA effects. Exposure 
groups were a) sham control early term, b) BPAearly, c) sham control late term, and d) BPAlate. The lung 
diagram (B) illustrates the two airway sites sampled including intrapulmonary proximal bronchi generations 
3–4 and distal airway generations 8 through respiratory bronchioles.
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of 1.056 mg/24 hr was based on test cap-
sules loaded with tritiated BPA (3H-BPA) 
that were placed in saline solution for up to 
40 days. The resulting serum levels for non-
pregnant test animals that received implanted 
capsules for 2 weeks ranged from 2.2 to 
3.3 ng/mL unconjuated dBPA, within the 
range (0.5–22.3 ng/mL) measured in humans 
(Padmanabhan et al. 2008). Age-matched con-
trol animals were treated with sham corn oil 
implants (n = 2 of each age). Additional lobes 
prepared similarly to those for quantitative 
real-time reverse transcriptase polymerase chain 
reaction (qRT-PCR) analysis in this study were 
available from age-matched sham-control ani-
mals given corn oil–treated fruit (n = 4–6 of 
each age). Control animals from the two stud-
ies did not vary from each other by treatment 
and so both control groups were combined 
and used together as controls for each age for 
qRT-PCR analysis (n = 7–8). The in vivo por-
tion of the study was conducted with only two 
control animals assigned to each gestation age 
group (early and late) because of limited preg-
nant dam availability. We attempted to com-
pensate for the small n by using both current 
and historical control data. However, the par-
ticular protocol for lung inflation with fixative 
and site-specific localization of airways used in 
the present study for histologic sample prepara-
tion differed significantly from historical con-
trol sample processing, making additional lobes 
from historic controls inappropriate for com-
parable histo logic and immuno histochemical 
staining and subsequent morphometric analy sis 
and resulting in n = 2 for each control group/
age for these end points. BPA-treated samples 
were n = 6 for each age.

Lung tissue processing. All fetuses were 
removed by cesarean section at GD100 for 
the early-dosing group and GD150 for the 
late-dosing group. The lobes of the lung were 
subdivided and processed as described in 
Supplemental Material, p. 2 (http://dx.doi.
org/10.1289/ehp.1206064). Because lung 
maturation occurs in a proximal to distal 
direction, we analyzed two groups of airway 
generations (Figure 1B) using qRT-PCR, 
high-resolution histopathology, and immuno-
histochemistry. The two groups were a) proxi-
mal airways (generations 3–4, intrapulmonary 
bronchi), and b) distal airways (airway genera-
tions 8–10, distal bronchioles).

Immunohistochemistry and histo chemistry. 
Paraffin sections from two control animals and 
four treated animals per age (approximately 
3–4 slides/animal) were immuno stained for 
CCSP (1:2000; BioVendor, Asheville, NC). 
Controls included the substitution of primary 
antibody with phosphate buffered saline, 
which resulted in loss of specific staining [see 
Supplemental Material, Figure S1 (http://
dx.doi.org/10.1289/ehp.1206064)]. Mucous 
cells were stained with Alcian Blue–Periodic 

Acid Schiff (AB/PAS) histologic stain 
(American MasterTech, Lodi, CA) follow-
ing the manufacturer’s instructions (Caramori 
et al. 2009) (for details, see Supplemental 
Material, p. 2).

Morphometric histopathology. Because 
the amount of site-specific paraffin sections 
was limited in these fetal lungs, we quanti-
fied only the abundance of muco substance 
in the airway epithelium of proximal (intra-
pulmonary generations 1–3) conducting air-
ways, determined using stereologic assessment 
of lung structure (Hsia et al. 2010). Paraffin 
sections (5-µm thick) from two to four ani-
mals per group per age (2–4 slides/animal) 
were stained for mucin using AB/PAS stain-
ing (Caramori et al. 2009). The volume 
fraction and mass of mucosubstance in the 
proximal epithelium, as well as epithelial 
thickness, were assessed in two controls and 
four BPA-treated animals per age [for details, 

see Supplemental Material, p. 3 (http://
dx.doi.org/10.1289/ehp.1206064)].

Gene expression .  CCSP ,  Muc5AC , 
and Muc5B gene expression was measured 
using qRT-PCR (n = 5–8) [for details, see 
Supplemental Material, pp. 3–4 (http://dx.doi.
org/10.1289/ehp.1206064)].

Statistics. Fold change of gene expression 
in microdissected airways from 5–8 animals 
per time point was calculated using the com-
parative Ct method as described previously 
[Applied Biosystems; Life Technologies Corp., 
Carlsbad, CA (Livak and Schmittgen 2001)]. 
Results were reported as fold changes rela-
tive to proximal late control and graphed as 
mean ± SE. Statistical outliers were eliminated 
using the extreme studentized deviate method 
(Graphpad, La Jolla, CA). Undetected and 
samples observed below detection limit were 
treated as non detects, and their values were 
imputed using the natural-log regression 

Figure 2. Expression of secretory products and epithelial morphology during normal prenatal develop
ment. Expression of secretory product mRNA in microdissected proximal and distal airways (A–C) as 
measured by qRTPCR and reported as fold change compared with late control proximal airway. Muc5 
mRNA expression did not vary significantly but had slight, nonsignificant increases in Muc5AC (A) in distal 
airways (p = 0.07) and Muc5B (B) in proximal airways late in gestation compared with both early proximal 
(p = 0.4) and late distal compartments (p = 0.2). (C) CCSP gene expression was significantly increased 
late in gestation in distal airways in comparison with early distal (p = 0.001) and late proximal (p = 0.002) 
ages. (D,E) Representative high resolution histopathology of proximal airway epithelium in resin sections 
stained with methylene blue/azure II stain. Proximal airway epithelial cell morphology early in gestation 
(GD100) (D). Proximal airway epithelial cell morphology late in gestation (D150) (E). M, mucous cell. Data 
are presented as mean ± SE (oneway ANOVA and PLSD post hoc analysis). Bar = 50 µm.
*p < 0.05 compared with same compartment, early age expression. #p < 0.05 compared with same age, proximal compart
ment expression. n = 5–8 for qRTPCR.
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on order statistics method (Helsel 2005; 
Shumway et al. 2002) using ProUCL [U.S. 
Environmental Protection Agency (http://
www.epa.gov/osp/hstl/tsc/software.htm)]. 
Multivariate analysis of variance (MANOVA) 
was applied against age, compartment, and 
exposure factors when appropriate. Pair-wise 
comparisons were performed individually 
using a one-way ANOVA followed by pro-
tected least significant difference (PLSD) post 
hoc analysis using StatView, version 5.0.1 
(SAS Institute Inc., Cary, NC). p-Values of 
≤ 0.05 were considered statistically signifi-
cant. Morphometric analy sis of proximal air-
way mucosubstance was assessed in control 
(n = 2) and BPA-exposed (n = 3–4) animals. 
Because of the small number of control ani-
mals (n < 3), there were not enough data to 
conduct rigor ous statistical inferences between 
groups. Only descriptive statistics (arithmetic 
mean) are presented.

Results
Normal expression of secretory products dur
ing pre natal development. Muc5AC mRNA 
expression did not vary significantly by age 
or airway level (distal early vs. late p = 0.07), 
although a majority of samples (15 of 27) 
tested in distal airways at GD100 did not have 
detectable mRNA for this gene (Figure 2A). 
Muc5B mRNA did not differ significantly with 
age or compartment but was slightly more 
abundant in proximal airways versus distal air-
ways late in gestation, at GD150 (Figure 2B). 
CCSP mRNA was significantly more abun-
dant in distal bronchiolar airways (generations 
8–10) (Figure 1B) at GD150 (p = 0.002) than 
in proximal airways or in airways earlier in ges-
tation (p = 0.001) (Figure 2C). Maturation of 
the airway epithelium over the period of the 
present study was apparent on high-resolution 
resin sections. Glycogen, present as clear cyto-
plasmic inclusions in the tall pseudo stratified 
epithelium, was more abundant at GD100 and 
the basement membrane was less marked at 
GD100 than at GD150 (compare Figure 2D 
with 2E). Mucous cells appeared more mature 
at GD150, with a protruding apex and a 
 cytoplasm containing granules (Figure 2E).

Expression of secretory products after expo
sure to BPA. CCSP mRNA was detected at all 
ages and in both proximal (Figure 3A) and dis-
tal (Figure 3B) airways. BPA exposure in late 
gestation resulted in an insignificant increase 
in CCSP mRNA expression in the proximal 
bronchi versus control (p = 0.2) (Figure 3A). 
Early gestation CCSP gene expression was 
unaffected by BPA in proximal or distal air-
ways. In control animals, distal airways at 
DG150 contained significantly more CCSP 
mRNA expression than proximal (p = 0.002) 
or earlier GD100 (p = 0.001) airway levels (see 
Figure 3A, 3B). CCSP protein was localized 
to both tall pseudo stratified epithelial cells of 

the large airways and simple cuboidal epithe-
lium lacking cilia in the distal airways (Figure 
3C–F). BPA exposure markedly increased the 
distribution and abundance of CCSP protein 
in the airway epithelium (Figure 3D and F).

Muc5AC mRNA levels were changed by 
airway level and BPA exposure (Figure 4A 
and B). Similar to effects on CCSP seen at 
GD150, late gestational exposure elicited no 
significant effect in proximal (p = 0.2) air-
ways, but resulted in a significant decrease in 
distal (p = 0.02) airway mRNA expression. 
However, expression of Muc5B in the proxi-
mal bronchi was significantly increased in 
the BPA-late group by approximately 6-fold 
compared with GD150 control animals 
(p = 0.005) and distal BPA-GD150 airway 
expression (p = 0.003) (Figure 4C and D). 
Distal bronchiolar expression of Muc5B was 
not changed by age or BPA exposure.

Mucins detected using AB/PAS histo-
logic staining indicated mucosubstance-
positive cells in proximal airway epithelia. 
Morphometric assessment of volume fraction, 

Vv (Figure 4E), and volume per surface area 
or mass, Vs (Figure 4F), of muco substance-
positive cells and proximal epithelial thickness 
(t, in micrometers) (Figure 4G), showed that 
all three parameters increased with age. BPA 
exposure enhanced this trend by increasing 
volume fraction in both early and late ges-
tation (Figure 4E) but only increased mass 
in the BPA-early group (Figure 4F). BPA 
late in gestation reduced epithelial thickness 
compared with matched controls to levels 
just above the early groups. Figure 5 shows 
increased incidence of mucosubstance-pos-
itive cells in the proximal airways of BPA-
exposed animals compared with controls 
during both late (compare Figure 5A with 
Figure 5B) and early (compare Figure 5C 
with Figure 5D)  gestation.

Discussion
Our data indicate that exposure to environmen-
tally relevant levels of BPA during fetal lung 
development can alter expression of secretory 
genes (Muc5B, CCSP) and proteins (MUC5B, 

Figure 3. (A,B) Effect of BPA exposure on CCSP mRNA expression. CCSP mRNA expression in microdis
sected proximal (A) and distal airways (B) as measured by qRTPCR and reported as fold change compared 
with late control proximal airway. Distal control (B) mRNA expression increased significantly with age 
(p = 0.001), and late distal control was also significantly greater than the agematched proximal control 
(A) (p = 0.002). (C–F) Pattern of CCSP protein expression detected using immunohistochemistry on sec
tions of proximal airways. Representative sections of late control (n = 2) (C) and late BPAtreated animals 
(n = 4) (D) show a substantial increase in CCSP protein expression in columnar epithelial cells with similar 
morphologic characteristics to mucous cells. CCSP protein in distal airways of late control (E) and late BPA 
exposed (F) was expressed in cells resembling Clara cells (arrows). E, epithelial cells. Data are represented 
as mean ± SE (oneway ANOVA and PLSD post hoc analysis). Bar = 50 µm.
*p < 0.05 compared with same compartment, early age expression. #p < 0.05 compared with same age, proximal compart
ment expression. n = 5–7 for qRTPCR values. Data are represented as mean ± SE (oneway ANOVA and PLSD post hoc 
analysis).

Control
BPA

Early (GD100) Late (GD150)

Proximal airway Distal airway
Early (GD100) Late (GD150)

12

10

8

6

4

2

0

25

20

15

10

5

0

#
*

CC
SP

 fo
ld

 c
ha

ng
e 

re
la

tiv
e 

to
 

pr
ox

im
al

 la
te

 c
on

tr
ol

 (2
–Δ
Δ

CT
)

CC
SP

 fo
ld

 c
ha

ng
e 

re
la

tiv
e 

to
 

pr
ox

im
al

 la
te

 c
on

tr
ol

 (2
–Δ
Δ

CT
)

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/software.htm


Van Winkle et al.

916 volume 121 | number 8 | August 2013 • Environmental Health Perspectives

CCSP) in the conducting airways. Further, we 
found that this increase was most pronounced 
in the proximal conducting airways, bronchi. 
BPA exposure later in gestation (roughly span-
ning the third trimester) has a greater effect on 
epithelial secretory maturation than an earlier 

exposure. Thus we have identified a critical 
window of timing in development for BPA 
alteration of the normal lung. It is likely that 
this critical window of time will also apply to 
human exposures in the third trimester because 
the timing of cellular development, as well as 

conducting airway architecture/cellular com-
position, in the rhesus monkey lung closely 
recapitulates that in humans (Table 1) (Burri 
1997; Plopper and Hyde 2008; Tarantal and 
Gargosky 1995). Our results also underscore 
the importance and feasibility of using site- 
specific methods to study fetal development 
in the rhesus monkey: Cell maturation in the 
conducting airways occurs in a proximal to dis-
tal direction, comparing like sites is important 
because of the large gradient in differentiation 
between  different airway generations.

There is a dichotomy in BPA’s effects 
on conducting airway mucins: MUC5B is 
affected by exposure, and MUC5AC expres-
sion is not. Mucins are critical for mainte-
nance of normal lung homeostasis. They 
contribute to the liquid lining layer of the 
airways and assist with the removal of for-
eign substances and the regulation of inflam-
mation. Overly abundant secretion and 
storage of mucus can cause airway obstruc-
tion as found in a number of lung diseases, 
including asthma and bronchitis. BPA expo-
sure increases both mucous cell abundance 
and Muc5B gene expression. BPA exposure 
increases the percentage of mucous cells (Vv; 
Figure 4E), but the mass of mucous cells (Vs; 
Figure 4F) is increased only in the early expo-
sure group. This is possibly due to decreased 
epithelial thickness (t; Figure 4G) in the 
BPA late exposure group, when the mucous 
cells make up a higher percentage of a thin-
ner epithelium. The effects of BPA exposure 
on Muc5B may be due to the binding of the 
parent molecule or its metabolites to estro-
gen receptors (Okuda et al. 2011). Estrogen 
(17β-estradiol) is known to induce Muc5B 
expression in airway epithelial cells (Choi et al. 
2009) via estrogen receptor-α. BPA inter-
acts with both nuclear estrogen receptors-α 
and -β, which regulate transcription as well 
as cell membrane– bound estrogen receptors 
(vom Saal et al. 2007). MUC5B is found both 
in airway submucosal glands and in surface 
epithelial goblet cells (Finkbeiner et al. 2011). 
MUC5AC is more predominant in the sur-
face goblet cells (Finkbeiner et al. 2011). We 
were not able to analyze the effects of BPA 
on glandular development; we had too little 
sample to define this histologically and the 
airway microdissection method we used for 
qRT-PCR combines both airway glands and 
the surface epithelium in the same sample. 
Future studies could correlate glandular ver-
sus airway epithelial expression of MUC5B 
using laser capture microdissection as has been 
done in the study of salivary glands in humans 
(Kouznetsova et al. 2010). Our data shows 
that BPA exposure increases the expression 
of both the gene and the protein for the two 
most abundant secretory proteins, MUC5B 
and CCSP, in the airways. Increased expres-
sion is apparent with more cells containing the 

Figure 4. Effect of BPA exposure on mucin expression. Muc5AC (A,B) and Muc5B (C,D) gene expression 
was measured by qRTPCR in microdissected proximal (A,C) and distal (B,D) airways. Gene expression 
changes are reported as fold change compared with late proximal control. Late proximal BPA (A) is 
significantly greater than matched distal (B) group (p = 0.02). Late distal control Muc5AC expression (B) 
was significantly greater than matched BPA (p = 0.02). Late proximal BPA Muc5B expression (C) was 
significantly greater than matched control (p = 0.005) and age and treatmentmatched distal group (D) 
(p = 0.003). Morphometric assessment of volume fraction, Vv (E), and volume per surface area (mass), 
Vs (F), of mucosubstancepositive proximal epithelial cells, and proximal epithelial thickness (µm) (G). 
Morphometric measurements of proximal airways are presented as individual data points (1/animal) with 
the bar representing the arithmetic mean (n = 2–4). BPA increases the volume fraction of mucosubstance 
in proximal epithelia in both early and late gestation (E) and the mass (F) of mucosubstance (Vs) in early 
gestation. Epithelial thickness decreased with BPA treatment in late gestation (G). Data are represented 
as mean ± SE (oneway ANOVA and PLSD post hoc analysis).
*p < 0.05 compared with same compartment, BPA treated group. #p < 0.05 compared with same compartment, control 
group. †p < 0.05 compared with same agetreatment, distal compartment. n = 5–8 for qRTPCR values.
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protein, increased abundance of the protein 
per cell, and increased gene expression on an 
airway basis.

The biologic relevance of the increase in 
CCSP in the proximal airways is unknown. 
There is little data showing the effects of 
increased CCSP. However, decreased secre-
tion of CCSP has been found in the lavage 
fluid of patients with asthma (Van Vyve et al. 
1995), and polymorphisms in this gene that 
confer low serum levels of CCSP correlate 
with an increased risk of asthma in children 
with allergic rhinitis (Ku et al. 2011). In gen-
eral, CCSP is considered a beneficial protein, 
so much so that recombinant human CCSP 
has been considered as a therapy in infants 
with respiratory distress (Abdel-Latif and 
Osborn 2011). CCSP has not been reported 
to be responsive to estrogens in the lung but 
can be increased by exposure to interferon-γ 
(Ramsay et al. 2003) and tumor necrosis 
 factor-α (Cowan et al. 2000). Why CCSP 
is up-regulated by BPA in the epithelium of 
the large airways of fetal rhesus monkeys will 
require further investigation.

It is unknown whether increased expres-
sion of MUC5B and CCSP is an aberrant pro-
cess that could persist and lead to pathology or 
disease later in life or whether this is actually 
a neutral or even beneficial process. This is a 
limitation of the present study, which does not 
contain a follow-up period succeeding BPA 
exposure to determine whether these changes 
persist. What makes the current findings worri-
some, however, are previous studies that dem-
onstrate fetal BPA exposure increases allergic 
sensitization and asthma hallmarks in mouse 

models (Midoro-Horiuti et al. 2010; Nakajima 
et al. 2012). In the mouse, when BPA exposure 
spanned the period from before implantation 
to weaning, BPA exposure accelerated air-
ways AHR to allergen challenge and increased 
eosinophils in the lavage fluid in the offspring 
of BPA-exposed dams (Midoro-Horiuti et al. 
2010). A follow-up study also found AHR 
after a shorter BPA exposure period that 
included only the pre natal period, from pre-
implantation to birth (Nakajima et al. 2012). 
Our exposure paradigm is a still shorter period, 
spanning most of a trimester late in gestation; 
nevertheless, it shows significant effects on 
the lung. BPA also affects the immune sys-
tem, leading to speculation that BPA may be 
involved in the development of asthma and 
allergy (Kwak et al. 2009). BPA has been 
shown to increase interleukin-4 production 
in primed CD4+ T cells (helper T cells) and 
also increases antigen-specific immunoglob-
ulin E in primed mice, potentially enhanc-
ing allergic responses (Lee et al. 2003). BPA 
exposure has also been found to slightly alter 
innate immunity in mice exposed to influenza 
(Roy et al. 2012). If mucous cell abundance 
is increased by BPA, and AHR/allergy also is 
increased, this could synergize and increase air-
way obstruction, making asthma more severe. 
Future studies of the effects of BPA on lung 
cellular development and asthma are needed 
and should focus on exposures that encompass 
this late fetal period and also include prolonged 
follow-up to determine long-term effects of 
early-life exposure to BPA.

The present study found significant effects 
in the fetus when the dam was exposed to 

BPA. Significant effects of chemical exposure 
during pre natal development occur for many 
reasons: a critical window of susceptibility, an 
enhanced delivered dose to the fetus due to 
differences in fetal- maternal detoxification/
metabolism, formation of unique metabolites, 
or selective uptake by compartments unique to 
the fetus including amniotic fluid or placenta. 
It is unknown whether all or some of these 
factors contribute to BPA’s fetal effects on the 
lung in this model. Certainly the chemical 
composition of the amniotic fluid should be 
considered because this fluid bathes the epi-
thelium lining the lung, which is affected by 
pre natal BPA exposure. The lung contains sub-
stantial xenobiotic metabolizing enzymes that 
can contribute to the local burden of metabo-
lites and have transient expression during lung 
development. This is of interest because some 
BPA metabolites have more estrogenic activ-
ity than the parent molecule (Nakamura et al. 
2011). Cytochrome P450 monooxygenases 
mature late in development and localize to the 
epithelial lining layer of the respiratory tract, 
the very area shown here to be affected by 
fetal BPA exposure. BPA is metabolized by 
cytochrome P450s and is detoxified through 
glucoronidation and sulfation. The balance 
of activation and detoxification is likely an 
important determinant of BPA effects, and this 
includes both maternal and fetal capabilities. 
Studies are needed to define the relative role of 
these enzymes and their influence on pharma-
cokinetics in the pre natal period, particularly 
during the third trimester in primates.

It is important to acknowledge the limi-
tations of this study. The sample is small 
for the histologic end points, and, although 
the sample is larger for the significant gene 
expression data, replication and extension of 
the study would provide more confidence in 
the study results. There is a lack of an expo-
sure group that is followed into the post natal 
period, which would allow for assessment of 
persistence of effect as well as study of pulmo-
nary function and lung compliance. Finally, 
because the original study was designed to 
look at effects on oogenesis, the monkey 
fetuses in this study are all female. Future 
studies should include both sexes because 
asthma is more prevalent in prepubertal males 
(Vink et al. 2010).

Conclusions
BPA exposure during late gestation accelerates 
secretory cell maturation in the proximal con-
ducting airways. We have identified a critical 
window of fetal susceptibility for BPA effects 
on lung epithelial cell maturation in the third 
trimester of a highly relevant model, the rhe-
sus monkey. This is of environmental health 
importance because increases in airway mucins 
are hallmarks of a number of childhood lung 
diseases that may be affected by BPA exposure.

Figure 5. Effect of BPA exposure on proximal epithelial mucosubstance expression. Representative sec
tions of airway epithelial mucosubstances, as detected using AB/PAS staining in proximal airways of 
late control (A), late BPA (B), early control (C), and early BPA (D) exposed groups. Mucosubstance was 
 localized to cells resembling goblet cells (arrows). Bar = 50 µm.
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